Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Sci (Basel) ; 12(19): 1-14, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36329909

RESUMO

As a fundamental component of data for life cycle assessment models, elementary flows have been demonstrated to be a key requirement of life cycle assessment data interoperability. However, existing elementary flow lists have been found to lack sufficient structure to enable improved interoperability between life cycle data sources. The Federal Life Cycle Assessment Commons Elementary Flow List provides a novel framework and structure for elementary flows, but the actual improvement this list provides to the interoperability of life cycle data has not been tested. The interoperability of ten elementary flow lists, two life cycle assessment databases, three life cycle impact assessment methods, and five life cycle assessment software sources is assessed with and without use of the Federal Life Cycle Assessment Commons Elementary Flow List as an intermediary in flow mapping. This analysis showed that only 25% of comparisons between these sources resulted in greater than 50% of flows being capable of automatic name-to-name matching between lists. This indicates that there is a low level of interoperability when using sources with their original elementary flow nomenclature, and elementary flow mapping is required to use these sources in combination. The mapping capabilities of the Federal Life Cycle Assessment Commons Elementary Flow List to sources were reviewed and revealed a notable increase in name-to-name matches. Overall, this novel framework is found to increase life cycle data source interoperability.

2.
Appl Sci (Basel) ; 12(7): 1-16, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35686028

RESUMO

The U.S. Environmental Protection Agency (USEPA) provides databases that agglomerate data provided by companies or states reporting emissions, releases, wastes generated, and other activities to meet statutory requirements. These databases, often referred to as inventories, can be used for a wide variety of environmental reporting and modeling purposes to characterize conditions in the United States. Yet, users are often challenged to find, retrieve, and interpret these data due to the unique schemes employed for data management, which could result in erroneous estimations or double-counting of emissions. To address these challenges, a system called Standardized Emission and Waste Inventories (StEWI) has been created. The system consists of four python modules that provide rapid access to USEPA inventory data in standard formats and permit filtering and combination of these inventory data. When accessed through StEWI, reported emissions of carbon dioxide to air and ammonia to water are reduced approximately two- and four-fold, respectively, to avoid duplicate reporting. StEWI will greatly facilitate the use of USEPA inventory data in chemical release and exposure modeling and life cycle assessment tools, among other things. To date, StEWI has been used to build the recent USEEIO model and the baseline electricity life cycle inventory database for the Federal LCA Commons.

3.
Int J Life Cycle Assess ; 28: 156-171, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36891065

RESUMO

Purpose: Electricity production is one of the largest sources of environmental emissions-especially greenhouse gases (GHGs)-in the USA. Emission factors (EFs) vary from region to region, which requires the use of spatially relevant EF data for electricity production while performing life cycle assessments (LCAs). Uncertainty information, which is sought by LCA practitioners, is rarely supplied with available life cycle inventories (LCIs). Methods: To address these challenges, we present a method for collecting data from different sources for electricity generation and environmental emissions; discuss the challenges involved in agglomerating such data; provide relevant suggestions and solutions to merge the information; and calculate EFs for electricity generation processes from various fuel sources for different spatial regions and spatial resolutions. The EFs from the US 2016 Electricity Life Cycle Inventory (eLCI) are analyzed and explored in this study. We also explore the method of uncertainty information derivation for the EFs. Results and discussion: We explore the EFs from different technologies across Emissions & Generation Resource Integrated Database (eGRID) regions in the USA. We find that for certain eGRID regions, the same electricity production technology may have worse emissions. This may be a result of the age of the plants in the region, the quality of fuel used, or other underlying factors. Region-wise life cycle impact assessment (LCIA) ISO 14040 impacts for total generation mix activities provide an overview of the total sustainability profile of electricity production in a particular region, rather than only global warming potential (GWP). We also find that, for different LCIA impacts, several eGRID regions are consistently worse than the US average LCIA impact for every unit of electricity generated. Conclusion: This work describes the development of an electricity production LCI at different spatial resolutions by combining and harmonizing information from several databases. The inventory consists of emissions, fuel inputs, and electricity and steam outputs from different electricity production technologies located across various regions of the USA. This LCI for electricity production in the USA will prove to be an enormous resource for all LCA researchers-considering the detailed sources of the information and the breadth of emissions covered by it.

4.
J Open Source Softw ; 6(66)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34805725

RESUMO

Life Cycle Assessment (LCA) is an established and standardized methodology to comprehensively assess environmental and public health metrics across industries and products (International Organization for Standardization, 2006). The United States Environmental Protection Agency (USEPA) is developing an open source LCA tool ecosystem (Ingwersen, 2019). The ecosystem includes tools to automate the creation of life cycle inventory (LCI) datasets, which account for flows to and from nature for steps across the life cycle of products or services, and tools for life cycle impact assessment (LCIA) to support classification and characterization of the cumulative LCI to potential impacts. Impacts are expressed via indicators, either midpoint or endpoint, corresponding to different points on the environmental cause-effect chain model (Frischknecht & Jolliet, 2016). This paper describes a USEPA LCA ecosystem tool 'LCIA formatter' that extracts LCIA information from original source methods and converts the data for interoperability with the rest of the USEPA LCA ecosystem tools.

5.
J Ind Ecol ; 25(1): 20-35, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867784

RESUMO

This study proposes methods to improve data mining workflows for modeling chemical manufacturing life cycle inventory. Secondary data sources can provide valuable information about environmental releases during chemical manufacturing. However, the often facility-level nature of the data challenges their utility for modeling specific processes and can impact the quality of the resulting inventory. First, a thorough data source analysis is performed to establish data quality scoring and create filtering rules to resolve data selection issues when source and species overlaps arise. A method is then introduced to develop context-based filter rules that leverage process metadata within data sources to improve how facility air releases are attributed to specific processes and increase the technological correlation and completeness of the inventory. Finally, a sanitization method is demonstrated to improve data quality by minimizing the exclusion of confidential business information (CBI). The viability of the methods is explored using case studies of cumene and sodium hydroxide production in the United States. The attribution of air releases using process context enables more sophisticated filtering to remove unnecessary flows from the inventory. The ability to sanitize and incorporate CBI is promising because it increases the sample size, and therefore representativeness, when constructing geographically averaged inventories. Future work will focus on expanding the application of context-based data filtering to other types and sources of environmental data.

6.
Water Res ; 191: 116635, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434710

RESUMO

Onsite non-potable reuse (NPR) is a way for buildings to conserve water using onsite sources for uses like toilet flushing, laundry and irrigation. Although early case study results are promising, aspects like system suitability, cost and environmental performance remain difficult to quantify and compare across broad geographic contexts and variable system configurations. In this study, we evaluate four NPR system types - rainwater harvesting (RWH), air-conditioning condensate harvesting (ACH), and source-separated graywater and mixed wastewater membrane bioreactors (GWMBR, WWMBR) - in terms of their ability to satisfy onsite non-potable demand, their environmental impacts and their economic cost. As part of the analysis, we developed the Non-potable Environmental and Economic Water Reuse Calculator (NEWR), a publicly available U.S. EPA web application that allows users to generate planning-level estimates of system cost and environmental performance using location and basic building characteristics as inputs. By running NEWR for a range of scenarios, we find that, across the U.S., rainfall and air-conditioner condensate are only able to satisfy a fraction of the non-potable demand typical of large buildings even under favorable climate conditions. Environmental impacts of RWH and ACH systems depend on local climate and were comparable to the ones of MBR systems where annual rainfall exceeds approximately 10 in/yr or annual condensate potential exceeds approximately 3 gal/cfm. MBR systems can meet all non-potable demands but their environmental impacts depend more on the composition of the local energy grid, owing to their greater reliance on electricity inputs. Incorporation of thermal recovery to offset building hot water heating requirements amplifies the influence of the local grid mix on environmental impacts, with mixed results depending on grid composition and whether thermal recovery offsets natural gas or electricity consumption. Additional environmental benefits are realized when NPR systems are implemented in water scarce regions with diverse topography and regions relying on groundwater sources, which increases the benefits of reducing reliance on centralized drinking water services. In terms of cost, WWMBRs were found to have the lowest cost under the largest range of building characteristics and locations, achieving cost parity with local drinking water rates when those rates were more than $7 per 1000 gallons, which occurred in 19% of surveyed cities.


Assuntos
Meio Ambiente , Águas Residuárias , Reatores Biológicos , Cidades , Calefação
7.
Water Sci Technol ; 82(2): 227-241, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941165

RESUMO

The wastewater industry is undergoing a paradigm shift from focusing solely on treatment to incorporating concepts aimed at mitigating environmental impacts such as energy and nutrient recovery and water reuse. This study uses life cycle assessment and life cycle cost analysis to investigate the effect of expanding anaerobic digestion (AD) capacity and adding combined heat and power on environmental and cost indicators at a mid-sized wastewater treatment facility (WWTF) in Massachusetts, USA. Since 2014, Massachusetts has banned the disposal of organic waste from commercial organizations producing more than one ton of material per week. The WWTF's additional digester capacity allows the co-digestion of municipal solids with a food-based engineered bioslurry due to this ban. Study data were compiled for several AD feedstock quantity and performance scenarios, and compared to a baseline scenario representative of historic plant operations prior to co-digestion. Reductions in environmental impact are demonstrated for six of eight environmental impacts, including global climate change potential and cumulative energy demand. Eutrophication potential increases by 10 percent and 24 percent across assessed scenarios. Water use remains relatively constant across scenarios. Facility energy production increases dramatically with co-digestion, satisfying 100 percent of the WWTF's thermal energy requirement and producing surplus electricity assuming full AD capacity utilization.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Anaerobiose , Análise Custo-Benefício , Alimentos
8.
Sustainability ; 12(13): 5459, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32944297

RESUMO

Onsite non-potable reuse (NPR) is being increasingly considered as a viable option to address water scarcity and infrastructure challenges, particularly at the building scale. However, there are a range of possible treatment technologies, source water options, and treatment system sizes, each with its unique costs and benefits. While demonstration projects are proving that these systems can be technologically feasible and protective of public health, little guidance exists for identifying systems that balance public health protection with environmental and economic performance. This study uses quantitative microbial risk assessment, life cycle assessment and life cycle cost analysis to characterize the human health, environmental and economic aspects of onsite NPR systems. Treatment trains for both mixed wastewater and source-separated graywater were modeled using a core biological process-an aerobic membrane bioreactor (AeMBR), an anaerobic membrane bioreactor (AnMBR) or recirculating vertical flow wetland (RVFW)-and additional treatment and disinfection unit processes sufficient to meet current health-based NPR guidelines. Results show that the graywater AeMBR system designed to provide 100% of onsite non-potable demand results in the lowest impacts across most environmental and human health metrics considered but costs more than the mixed-wastewater version due to the need for a separate collection system. The use of multiple metrics also allows for identification of weaknesses in systems that lead to burden shifting. For example, although the RVFW process requires less energy than the AeMBR process, the RVFW system is more environmentally impactful and costly when considering the additional unit processes required to protect human health. Similarly, we show that incorporation of thermal recovery units to reduce hot water energy consumption can offset some environmental impacts but result in increases to others, including cumulative energy demand. Results demonstrate the need for additional data on the pathogen treatment performance of NPR systems to inform NPR health guidance.

9.
Water Res X ; 22019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30882067

RESUMO

Urban water and wastewater utilities are striving to improve their environmental and economic performances due to multiple challenges such as increasingly stringent quality criterion, aging infrastructure, constraining financial burden, growing urban population, climate challenges and dwindling resources. Growing needs of holistic assessments of urban water systems are required to identify systems-level cross-domain solutions. This study evaluated the life cycle environmental and economic impacts of urban water and wastewater systems with two utilities in Greater Cincinnati region as a case study. The scope of this study includes the entire urban water and wastewater systems starting from raw water acquisition for drinking water to wastewater treatment and discharge. The detailed process-based life cycle models were developed based on the datasets provided by local water and wastewater utilities. The life cycle assessment indicated that the operation and maintenance of drinking water distribution was a dominating contributor for energy consumption (43%) and global warming potential (41%). Wastewater discharge from the wastewater treatment plant contributed to more than 80% of the total eutrophication potential. The cost analysis determined that labor and maintenance cost (19%) for wastewater collection, and electricity cost (13%) for drinking water distribution were major contributors. Electricity purchased by the utility was the driver for the majority of impact categories assessed with the exception of eutrophication, blue water use, and metal depletion. Infrastructure requirements had a negligible influence on impact results, contributing less than 3% to most categories, with the exception of metal depletion where it led to 68% of total burdens. Sensitivity analysis showed that the life cycle environmental results were more sensitive to the choice of the electricity mixes and electricity consumption than the rest of input parameters such as chemical dosages, and infrastructure life time. This is one of the first comprehensive studies of the whole urban water system using real case data. It elucidates a bigger picture of energy, resource and cost distributions in a typical urban centralized water system. Inherent to a modern city as large population centers, a significant expenditure has to be invested to provide water services function (moving water, treating water/wastewater) in order to avoid human and environmental health problems. This study provides insights for optimization potentials of overall treatment efficiency and can serve as a benchmark for communities considering adoption of alternative water systems.

10.
Bioresour Technol ; 254: 56-66, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29413939

RESUMO

This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and can produce recycled water to displace potable water. Energy recovery is possible with methane generated from AnMBRs. Scenarios for these technologies were investigated for different scale systems serving various population densities under a number of climate conditions with multiple methane recovery options. When incorporating the displacement of drinking water, AeMBRs started to realize net energy benefits at the 1 million gallons per day (MGD) scale and mesophilic AnMBRs at the 5 MGD scale. For all scales, the psychrophilic AnMBR resulted in net energy benefits. This study provides insights into key performance characteristics needed before an informed decision can be made for a community to transition towards the adoption of MBR technologies.


Assuntos
Reatores Biológicos , Gases de Efeito Estufa , Metano , Anaerobiose , Clima , Membranas Artificiais , Densidade Demográfica , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água
11.
Sustainability ; 10(10): 1-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607262

RESUMO

To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded their conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40 percent compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7 and 108 percent, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15 percent over a 30-year period.

12.
Environ Sci Technol ; 50(17): 9013-25, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27517866

RESUMO

Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.


Assuntos
Monitoramento Ambiental , United States Environmental Protection Agency , Reprodutibilidade dos Testes , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...